Computer Science > Computation and Language
[Submitted on 17 Jun 2024 (v1), last revised 18 Oct 2024 (this version, v2)]
Title:Do Not Design, Learn: A Trainable Scoring Function for Uncertainty Estimation in Generative LLMs
View PDF HTML (experimental)Abstract:Uncertainty estimation (UE) of generative large language models (LLMs) is crucial for evaluating the reliability of generated sequences. A significant subset of UE methods utilize token probabilities to assess uncertainty, aggregating multiple token probabilities into a single UE score using a scoring function. Existing scoring functions for probability-based UE, such as length-normalized scoring and semantic contribution-based weighting, are designed to solve certain aspects of the problem but exhibit limitations, including the inability to handle biased probabilities and complex semantic dependencies between tokens. To address these issues, in this work, we propose Learnable Response Scoring (LARS) function, a novel scoring function that leverages supervised data to capture complex dependencies between tokens and probabilities, thereby producing more reliable and calibrated response scores in computing the uncertainty of LLM generations. Our comprehensive experiments across question-answering and arithmetical reasoning tasks with various datasets demonstrate that LARS significantly outperforms existing scoring functions, achieving improvements of up to 16\% AUROC score.
Submission history
From: Yavuz Faruk Bakman [view email][v1] Mon, 17 Jun 2024 07:30:40 UTC (2,861 KB)
[v2] Fri, 18 Oct 2024 02:28:29 UTC (3,842 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.