Computer Science > Information Retrieval
[Submitted on 17 Jun 2024]
Title:DiffMM: Multi-Modal Diffusion Model for Recommendation
View PDF HTML (experimental)Abstract:The rise of online multi-modal sharing platforms like TikTok and YouTube has enabled personalized recommender systems to incorporate multiple modalities (such as visual, textual, and acoustic) into user representations. However, addressing the challenge of data sparsity in these systems remains a key issue. To address this limitation, recent research has introduced self-supervised learning techniques to enhance recommender systems. However, these methods often rely on simplistic random augmentation or intuitive cross-view information, which can introduce irrelevant noise and fail to accurately align the multi-modal context with user-item interaction modeling. To fill this research gap, we propose a novel multi-modal graph diffusion model for recommendation called DiffMM. Our framework integrates a modality-aware graph diffusion model with a cross-modal contrastive learning paradigm to improve modality-aware user representation learning. This integration facilitates better alignment between multi-modal feature information and collaborative relation modeling. Our approach leverages diffusion models' generative capabilities to automatically generate a user-item graph that is aware of different modalities, facilitating the incorporation of useful multi-modal knowledge in modeling user-item interactions. We conduct extensive experiments on three public datasets, consistently demonstrating the superiority of our DiffMM over various competitive baselines. For open-sourced model implementation details, you can access the source codes of our proposed framework at: this https URL .
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.