Computer Science > Cryptography and Security
[Submitted on 12 Jun 2024]
Title:Security Decisions for Cyber-Physical Systems based on Solving Critical Node Problems with Vulnerable Nodes
View PDF HTML (experimental)Abstract:Cyber-physical production systems consist of highly specialized software and hardware components. Most components and communication protocols are not built according to the Secure by Design principle. Therefore, their resilience to cyberattacks is limited. This limitation can be overcome with common operational pictures generated by security monitoring solutions. These pictures provide information about communication relationships of both attacked and non-attacked devices, and serve as a decision-making basis for security officers in the event of cyberattacks. The objective of these decisions is to isolate a limited number of devices rather than shutting down the entire production system. In this work, we propose and evaluate a concept for finding the devices to isolate. Our approach is based on solving the Critical Node Cut Problem with Vulnerable Vertices (CNP-V) - an NP-hard computational problem originally motivated by isolating vulnerable people in case of a pandemic. To the best of our knowledge, this is the first work on applying CNP-V in context of cybersecurity.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.