Computer Science > Machine Learning
[Submitted on 14 Jun 2024 (v1), last revised 22 Jun 2024 (this version, v2)]
Title:Multi-source Unsupervised Domain Adaptation on Graphs with Transferability Modeling
View PDF HTML (experimental)Abstract:In this paper, we tackle a new problem of \textit{multi-source unsupervised domain adaptation (MSUDA) for graphs}, where models trained on annotated source domains need to be transferred to the unsupervised target graph for node classification. Due to the discrepancy in distribution across domains, the key challenge is how to select good source instances and how to adapt the model. Diverse graph structures further complicate this problem, rendering previous MSUDA approaches less effective. In this work, we present the framework Selective Multi-source Adaptation for Graph ({\method}), with a graph-modeling-based domain selector, a sub-graph node selector, and a bi-level alignment objective for the adaptation. Concretely, to facilitate the identification of informative source data, the similarity across graphs is disentangled and measured with the transferability of a graph-modeling task set, and we use it as evidence for source domain selection. A node selector is further incorporated to capture the variation in transferability of nodes within the same source domain. To learn invariant features for adaptation, we align the target domain to selected source data both at the embedding space by minimizing the optimal transport distance and at the classification level by distilling the label function. Modules are explicitly learned to select informative source data and conduct the alignment in virtual training splits with a meta-learning strategy. Experimental results on five graph datasets show the effectiveness of the proposed method.
Submission history
From: Tianxiang Zhao [view email][v1] Fri, 14 Jun 2024 22:05:21 UTC (543 KB)
[v2] Sat, 22 Jun 2024 22:26:01 UTC (547 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.