Computer Science > Computer Vision and Pattern Recognition
[Submitted on 13 Jun 2024]
Title:Deep Transformer Network for Monocular Pose Estimation of Ship-Based UAV
View PDF HTML (experimental)Abstract:This paper introduces a deep transformer network for estimating the relative 6D pose of a Unmanned Aerial Vehicle (UAV) with respect to a ship using monocular images. A synthetic dataset of ship images is created and annotated with 2D keypoints of multiple ship parts. A Transformer Neural Network model is trained to detect these keypoints and estimate the 6D pose of each part. The estimates are integrated using Bayesian fusion. The model is tested on synthetic data and in-situ flight experiments, demonstrating robustness and accuracy in various lighting conditions. The position estimation error is approximately 0.8\% and 1.0\% of the distance to the ship for the synthetic data and the flight experiments, respectively. The method has potential applications for ship-based autonomous UAV landing and navigation.
Submission history
From: Maneesha Wickramasuriya [view email][v1] Thu, 13 Jun 2024 16:01:22 UTC (28,216 KB)
Current browse context:
cs.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
Connected Papers (What is Connected Papers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.