Computer Science > Machine Learning
[Submitted on 13 Jun 2024 (v1), last revised 3 Jul 2024 (this version, v4)]
Title:Fredformer: Frequency Debiased Transformer for Time Series Forecasting
View PDF HTML (experimental)Abstract:The Transformer model has shown leading performance in time series forecasting. Nevertheless, in some complex scenarios, it tends to learn low-frequency features in the data and overlook high-frequency features, showing a frequency bias. This bias prevents the model from accurately capturing important high-frequency data features. In this paper, we undertook empirical analyses to understand this bias and discovered that frequency bias results from the model disproportionately focusing on frequency features with higher energy. Based on our analysis, we formulate this bias and propose Fredformer, a Transformer-based framework designed to mitigate frequency bias by learning features equally across different frequency bands. This approach prevents the model from overlooking lower amplitude features important for accurate forecasting. Extensive experiments show the effectiveness of our proposed approach, which can outperform other baselines in different real-world time-series datasets. Furthermore, we introduce a lightweight variant of the Fredformer with an attention matrix approximation, which achieves comparable performance but with much fewer parameters and lower computation costs. The code is available at: this https URL
Submission history
From: Xihao Piao [view email][v1] Thu, 13 Jun 2024 11:29:21 UTC (13,900 KB)
[v2] Fri, 14 Jun 2024 04:41:22 UTC (13,876 KB)
[v3] Wed, 19 Jun 2024 09:25:23 UTC (3,228 KB)
[v4] Wed, 3 Jul 2024 14:24:39 UTC (3,751 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.