Computer Science > Computer Vision and Pattern Recognition
[Submitted on 14 Jun 2024 (v1), last revised 19 Aug 2024 (this version, v2)]
Title:Decoupling Forgery Semantics for Generalizable Deepfake Detection
View PDF HTML (experimental)Abstract:In this paper, we propose a novel method for detecting DeepFakes, enhancing the generalization of detection through semantic decoupling. There are now multiple DeepFake forgery technologies that not only possess unique forgery semantics but may also share common forgery semantics. The unique forgery semantics and irrelevant content semantics may promote over-fitting and hamper generalization for DeepFake detectors. For our proposed method, after decoupling, the common forgery semantics could be extracted from DeepFakes, and subsequently be employed for developing the generalizability of DeepFake detectors. Also, to pursue additional generalizability, we designed an adaptive high-pass module and a two-stage training strategy to improve the independence of decoupled semantics. Evaluation on FF++, Celeb-DF, DFD, and DFDC datasets showcases our method's excellent detection and generalization performance. Code is available at: this https URL.
Submission history
From: Wei Ye [view email][v1] Fri, 14 Jun 2024 06:00:14 UTC (12,546 KB)
[v2] Mon, 19 Aug 2024 06:27:49 UTC (12,546 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.