Computer Science > Hardware Architecture
[Submitted on 10 Jun 2024]
Title:fSEAD: a Composable FPGA-based Streaming Ensemble Anomaly Detection Library
View PDF HTML (experimental)Abstract:Machine learning ensembles combine multiple base models to produce a more accurate output. They can be applied to a range of machine learning problems, including anomaly detection. In this paper, we investigate how to maximize the composability and scalability of an FPGA-based streaming ensemble anomaly detector (fSEAD). To achieve this, we propose a flexible computing architecture consisting of multiple partially reconfigurable regions, pblocks, which each implement anomaly detectors. Our proof-of-concept design supports three state-of-the-art anomaly detection algorithms: Loda, RS-Hash and xStream. Each algorithm is scalable, meaning multiple instances can be placed within a pblock to improve performance. Moreover, fSEAD is implemented using High-level synthesis (HLS), meaning further custom anomaly detectors can be supported. Pblocks are interconnected via an AXI-switch, enabling them to be composed in an arbitrary fashion before combining and merging results at run-time to create an ensemble that maximizes the use of FPGA resources and accuracy. Through utilizing reconfigurable Dynamic Function eXchange (DFX), the detector can be modified at run-time to adapt to changing environmental conditions. We compare fSEAD to an equivalent central processing unit (CPU) implementation using four standard datasets, with speed-ups ranging from $3\times$ to $8\times$.
Current browse context:
cs.AR
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.