Computer Science > Computation and Language
[Submitted on 6 Jun 2024]
Title:What Makes Language Models Good-enough?
View PDF HTML (experimental)Abstract:Psycholinguistic research suggests that humans may build a representation of linguistic input that is 'good-enough' for the task at hand. This study examines what architectural features make language models learn human-like good-enough language processing. We focus on the number of layers and self-attention heads in Transformers. We create a good-enough language processing (GELP) evaluation dataset (7,680 examples), which is designed to test the effects of two plausibility types, eight construction types, and three degrees of memory cost on language processing. To annotate GELP, we first conduct a crowdsourcing experiment whose design follows prior psycholinguistic studies. Our model evaluation against the annotated GELP then reveals that the full model as well as models with fewer layers and/or self-attention heads exhibit a good-enough performance. This result suggests that models with shallower depth and fewer heads can learn good-enough language processing.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.