Computer Science > Machine Learning
[Submitted on 5 Jun 2024]
Title:Robust Prediction Model for Multidimensional and Unbalanced Datasets
View PDFAbstract:Data Mining is a promising field and is applied in multiple domains for its predictive capabilities. Data in the real world cannot be readily used for data mining as it suffers from the problems of multidimensionality, unbalance and missing values. It is difficult to use its predictive capabilities by novice users. It is difficult for a beginner to find the relevant set of attributes from a large pool of data available. The paper presents a Robust Prediction Model that finds a relevant set of attributes; resolves the problems of unbalanced and multidimensional real-life datasets and helps in finding patterns for informed decision making. Model is tested upon five different datasets in the domain of Health Sector, Education, Business and Fraud Detection. The results showcase the robust behaviour of the model and its applicability in various domains.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.