Computer Science > Computer Vision and Pattern Recognition
[Submitted on 5 Jun 2024 (v1), last revised 26 Aug 2024 (this version, v2)]
Title:Self-Supervised Skeleton-Based Action Representation Learning: A Benchmark and Beyond
View PDF HTML (experimental)Abstract:Self-supervised learning (SSL), which aims to learn meaningful prior representations from unlabeled data, has been proven effective for skeleton-based action understanding. Different from the image domain, skeleton data possesses sparser spatial structures and diverse representation forms, with the absence of background clues and the additional temporal dimension, presenting new challenges for spatial-temporal motion pretext task design. Recently, many endeavors have been made for skeleton-based SSL, achieving remarkable progress. However, a systematic and thorough review is still lacking. In this paper, we conduct, for the first time, a comprehensive survey on self-supervised skeleton-based action representation learning. Following the taxonomy of context-based, generative learning, and contrastive learning approaches, we make a thorough review and benchmark of existing works and shed light on the future possible directions. Remarkably, our investigation demonstrates that most SSL works rely on the single paradigm, learning representations of a single level, and are evaluated on the action recognition task solely, which leaves the generalization power of skeleton SSL models under-explored. To this end, a novel and effective SSL method for skeleton is further proposed, which integrates versatile representation learning objectives of different granularity, substantially boosting the generalization capacity for multiple skeleton downstream tasks. Extensive experiments under three large-scale datasets demonstrate our method achieves superior generalization performance on various downstream tasks, including recognition, retrieval, detection, and few-shot learning.
Submission history
From: Jiahang Zhang [view email][v1] Wed, 5 Jun 2024 06:21:54 UTC (2,699 KB)
[v2] Mon, 26 Aug 2024 09:23:44 UTC (2,446 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.