Computer Science > Software Engineering
[Submitted on 3 Jun 2024]
Title:Towards Effective Detection of Ponzi schemes on Ethereum with Contract Runtime Behavior Graph
View PDF HTML (experimental)Abstract:Ponzi schemes, a form of scam, have been discovered in Ethereum smart contracts in recent years, causing massive financial losses. Existing detection methods primarily focus on rule-based approaches and machine learning techniques that utilize static information as features. However, these methods have significant limitations. Rule-based approaches rely on pre-defined rules with limited capabilities and domain knowledge dependency. Using static information like opcodes for machine learning fails to effectively characterize Ponzi contracts, resulting in poor reliability and interpretability. Moreover, relying on static information like transactions for machine learning requires a certain number of transactions to achieve detection, which limits the scalability of detection and hinders the identification of 0-day Ponzi schemes.
In this paper, we propose PonziGuard, an efficient Ponzi scheme detection approach based on contract runtime behavior. Inspired by the observation that a contract's runtime behavior is more effective in disguising Ponzi contracts from the innocent contracts, PonziGuard establishes a comprehensive graph representation called contract runtime behavior graph (CRBG), to accurately depict the behavior of Ponzi contracts. Furthermore, it formulates the detection process as a graph classification task on CRBG, enhancing its overall effectiveness. The experiment results show that PonziGuard surpasses the current state-of-the-art approaches in the ground-truth dataset. We applied PonziGuard to Ethereum Mainnet and demonstrated its effectiveness in real-world scenarios. Using PonziGuard, we identified 805 Ponzi contracts on Ethereum Mainnet, which have resulted in an estimated economic loss of 281,700 Ether or approximately $500 million USD. We also found 0-day Ponzi schemes in the recently deployed 10,000 smart contracts.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.