Computer Science > Information Retrieval
[Submitted on 31 May 2024 (v1), last revised 1 Nov 2024 (this version, v2)]
Title:LLM-ESR: Large Language Models Enhancement for Long-tailed Sequential Recommendation
View PDFAbstract:Sequential recommender systems (SRS) aim to predict users' subsequent choices based on their historical interactions and have found applications in diverse fields such as e-commerce and social media. However, in real-world systems, most users interact with only a handful of items, while the majority of items are seldom consumed. These two issues, known as the long-tail user and long-tail item challenges, often pose difficulties for existing SRS. These challenges can adversely affect user experience and seller benefits, making them crucial to address. Though a few works have addressed the challenges, they still struggle with the seesaw or noisy issues due to the intrinsic scarcity of interactions. The advancements in large language models (LLMs) present a promising solution to these problems from a semantic perspective. As one of the pioneers in this field, we propose the Large Language Models Enhancement framework for Sequential Recommendation (LLM-ESR). This framework utilizes semantic embeddings derived from LLMs to enhance SRS without adding extra inference load from LLMs. To address the long-tail item challenge, we design a dual-view modeling framework that combines semantics from LLMs and collaborative signals from conventional SRS. For the long-tail user challenge, we propose a retrieval augmented self-distillation method to enhance user preference representation using more informative interactions from similar users. To verify the effectiveness and versatility of our proposed enhancement framework, we conduct extensive experiments on three real-world datasets using three popular SRS models. The results show that our method surpasses existing baselines consistently, and benefits long-tail users and items especially. The implementation code is available at this https URL.
Submission history
From: Qidong Liu [view email][v1] Fri, 31 May 2024 07:24:42 UTC (1,857 KB)
[v2] Fri, 1 Nov 2024 03:12:44 UTC (8,841 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.