Computer Science > Machine Learning
[Submitted on 27 May 2024 (v1), last revised 28 May 2024 (this version, v2)]
Title:Recurrent and Convolutional Neural Networks in Classification of EEG Signal for Guided Imagery and Mental Workload Detection
View PDF HTML (experimental)Abstract:The Guided Imagery technique is reported to be used by therapists all over the world in order to increase the comfort of patients suffering from a variety of disorders from mental to oncology ones and proved to be successful in numerous of ways. Possible support for the therapists can be estimation of the time at which subject goes into deep relaxation. This paper presents the results of the investigations of a cohort of 26 students exposed to Guided Imagery relaxation technique and mental task workloads conducted with the use of dense array electroencephalographic amplifier. The research reported herein aimed at verification whether it is possible to detect differences between those two states and to classify them using deep learning methods and recurrent neural networks such as EEGNet, Long Short-Term Memory-based classifier, 1D Convolutional Neural Network and hybrid model of 1D Convolutional Neural Network and Long Short-Term Memory. The data processing pipeline was presented from the data acquisition, through the initial data cleaning, preprocessing and postprocessing. The classification was based on two datasets: one of them using 26 so-called cognitive electrodes and the other one using signal collected from 256 channels. So far there have not been such comparisons in the application being discussed. The classification results are presented by the validation metrics such as: accuracy, recall, precision, F1-score and loss for each case. It turned out that it is not necessary to collect signals from all electrodes as classification of the cognitive ones gives the results similar to those obtained for the full signal and extending input to 256 channels does not add much value. In Disscussion there were proposed an optimal classifier as well as some suggestions concerning the prospective development of the project.
Submission history
From: Filip Postepski [view email][v1] Mon, 27 May 2024 07:49:30 UTC (5,394 KB)
[v2] Tue, 28 May 2024 11:29:06 UTC (5,394 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.