Computer Science > Computer Vision and Pattern Recognition
[Submitted on 26 May 2024]
Title:The devil is in discretization discrepancy. Robustifying Differentiable NAS with Single-Stage Searching Protocol
View PDF HTML (experimental)Abstract:Neural Architecture Search (NAS) has been widely adopted to design neural networks for various computer vision tasks. One of its most promising subdomains is differentiable NAS (DNAS), where the optimal architecture is found in a differentiable manner. However, gradient-based methods suffer from the discretization error, which can severely damage the process of obtaining the final architecture. In our work, we first study the risk of discretization error and show how it affects an unregularized supernet. Then, we present that penalizing high entropy, a common technique of architecture regularization, can hinder the supernet's performance. Therefore, to robustify the DNAS framework, we introduce a novel single-stage searching protocol, which is not reliant on decoding a continuous architecture. Our results demonstrate that this approach outperforms other DNAS methods by achieving 75.3% in the searching stage on the Cityscapes validation dataset and attains performance 1.1% higher than the optimal network of DCNAS on the non-dense search space comprising short connections. The entire training process takes only 5.5 GPU days due to the weight reuse, and yields a computationally efficient architecture. Additionally, we propose a new dataset split procedure, which substantially improves results and prevents architecture degeneration in DARTS.
Submission history
From: Konstanty Subbotko [view email][v1] Sun, 26 May 2024 15:44:53 UTC (282 KB)
Current browse context:
cs.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.