Computer Science > Computation and Language
[Submitted on 26 May 2024]
Title:DarijaBanking: A New Resource for Overcoming Language Barriers in Banking Intent Detection for Moroccan Arabic Speakers
View PDF HTML (experimental)Abstract:Navigating the complexities of language diversity is a central challenge in developing robust natural language processing systems, especially in specialized domains like banking. The Moroccan Dialect (Darija) serves as the common language that blends cultural complexities, historical impacts, and regional differences. The complexities of Darija present a special set of challenges for language models, as it differs from Modern Standard Arabic with strong influence from French, Spanish, and Tamazight, it requires a specific approach for effective communication. To tackle these challenges, this paper introduces \textbf{DarijaBanking}, a novel Darija dataset aimed at enhancing intent classification in the banking domain, addressing the critical need for automatic banking systems (e.g., chatbots) that communicate in the native language of Moroccan clients. DarijaBanking comprises over 1,800 parallel high-quality queries in Darija, Modern Standard Arabic (MSA), English, and French, organized into 24 intent classes. We experimented with various intent classification methods, including full fine-tuning of monolingual and multilingual models, zero-shot learning, retrieval-based approaches, and Large Language Model prompting. One of the main contributions of this work is BERTouch, our BERT-based language model for intent classification in Darija. BERTouch achieved F1-scores of 0.98 for Darija and 0.96 for MSA on DarijaBanking, outperforming the state-of-the-art alternatives including GPT-4 showcasing its effectiveness in the targeted application.
Submission history
From: Abderrahman Skiredj [view email][v1] Sun, 26 May 2024 08:33:28 UTC (47 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.