Electrical Engineering and Systems Science > Image and Video Processing
[Submitted on 24 May 2024]
Title:Towards Precision Healthcare: Robust Fusion of Time Series and Image Data
View PDF HTML (experimental)Abstract:With the increasing availability of diverse data types, particularly images and time series data from medical experiments, there is a growing demand for techniques designed to combine various modalities of data effectively. Our motivation comes from the important areas of predicting mortality and phenotyping where using different modalities of data could significantly improve our ability to predict. To tackle this challenge, we introduce a new method that uses two separate encoders, one for each type of data, allowing the model to understand complex patterns in both visual and time-based information. Apart from the technical challenges, our goal is to make the predictive model more robust in noisy conditions and perform better than current methods. We also deal with imbalanced datasets and use an uncertainty loss function, yielding improved results while simultaneously providing a principled means of modeling uncertainty. Additionally, we include attention mechanisms to fuse different modalities, allowing the model to focus on what's important for each task. We tested our approach using the comprehensive multimodal MIMIC dataset, combining MIMIC-IV and MIMIC-CXR datasets. Our experiments show that our method is effective in improving multimodal deep learning for clinical applications. The code will be made available online.
Current browse context:
eess.IV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.