Computer Science > Computation and Language
[Submitted on 22 May 2024 (v1), last revised 30 Oct 2024 (this version, v2)]
Title:Embedding Trajectory for Out-of-Distribution Detection in Mathematical Reasoning
View PDF HTML (experimental)Abstract:Real-world data deviating from the independent and identically distributed (i.i.d.) assumption of in-distribution training data poses security threats to deep networks, thus advancing out-of-distribution (OOD) detection algorithms. Detection methods in generative language models (GLMs) mainly focus on uncertainty estimation and embedding distance measurement, with the latter proven to be most effective in traditional linguistic tasks like summarization and translation. However, another complex generative scenario mathematical reasoning poses significant challenges to embedding-based methods due to its high-density feature of output spaces, but this feature causes larger discrepancies in the embedding shift trajectory between different samples in latent spaces. Hence, we propose a trajectory-based method TV score, which uses trajectory volatility for OOD detection in mathematical reasoning. Experiments show that our method outperforms all traditional algorithms on GLMs under mathematical reasoning scenarios and can be extended to more applications with high-density features in output spaces, such as multiple-choice questions.
Submission history
From: Yiming Wang [view email][v1] Wed, 22 May 2024 22:22:25 UTC (1,958 KB)
[v2] Wed, 30 Oct 2024 12:10:42 UTC (2,487 KB)
Current browse context:
cs.CL
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.