Computer Science > Software Engineering
[Submitted on 22 May 2024]
Title:Chain of Targeted Verification Questions to Improve the Reliability of Code Generated by LLMs
View PDF HTML (experimental)Abstract:LLM-based assistants, such as GitHub Copilot and ChatGPT, have the potential to generate code that fulfills a programming task described in a natural language description, referred to as a prompt. The widespread accessibility of these assistants enables users with diverse backgrounds to generate code and integrate it into software projects. However, studies show that code generated by LLMs is prone to bugs and may miss various corner cases in task specifications. Presenting such buggy code to users can impact their reliability and trust in LLM-based assistants. Moreover, significant efforts are required by the user to detect and repair any bug present in the code, especially if no test cases are available. In this study, we propose a self-refinement method aimed at improving the reliability of code generated by LLMs by minimizing the number of bugs before execution, without human intervention, and in the absence of test cases. Our approach is based on targeted Verification Questions (VQs) to identify potential bugs within the initial code. These VQs target various nodes within the Abstract Syntax Tree (AST) of the initial code, which have the potential to trigger specific types of bug patterns commonly found in LLM-generated code. Finally, our method attempts to repair these potential bugs by re-prompting the LLM with the targeted VQs and the initial code. Our evaluation, based on programming tasks in the CoderEval dataset, demonstrates that our proposed method outperforms state-of-the-art methods by decreasing the number of targeted errors in the code between 21% to 62% and improving the number of executable code instances to 13%.
Submission history
From: Arghavan Moradi Dakhel [view email][v1] Wed, 22 May 2024 19:02:50 UTC (1,097 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.