Computer Science > Machine Learning
[Submitted on 20 May 2024 (v1), last revised 27 Oct 2024 (this version, v2)]
Title:Is Mamba Compatible with Trajectory Optimization in Offline Reinforcement Learning?
View PDF HTML (experimental)Abstract:Transformer-based trajectory optimization methods have demonstrated exceptional performance in offline Reinforcement Learning (offline RL). Yet, it poses challenges due to substantial parameter size and limited scalability, which is particularly critical in sequential decision-making scenarios where resources are constrained such as in robots and drones with limited computational power. Mamba, a promising new linear-time sequence model, offers performance on par with transformers while delivering substantially fewer parameters on long sequences. As it remains unclear whether Mamba is compatible with trajectory optimization, this work aims to conduct comprehensive experiments to explore the potential of Decision Mamba (dubbed DeMa) in offline RL from the aspect of data structures and essential components with the following insights: (1) Long sequences impose a significant computational burden without contributing to performance improvements since DeMa's focus on sequences diminishes approximately exponentially. Consequently, we introduce a Transformer-like DeMa as opposed to an RNN-like DeMa. (2) For the components of DeMa, we identify the hidden attention mechanism as a critical factor in its success, which can also work well with other residual structures and does not require position embedding. Extensive evaluations demonstrate that our specially designed DeMa is compatible with trajectory optimization and surpasses previous methods, outperforming Decision Transformer (DT) with higher performance while using 30\% fewer parameters in Atari, and exceeding DT with only a quarter of the parameters in MuJoCo.
Submission history
From: Yang Dai [view email][v1] Mon, 20 May 2024 15:05:47 UTC (2,303 KB)
[v2] Sun, 27 Oct 2024 04:46:58 UTC (3,825 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.