Computer Science > Cryptography and Security
[Submitted on 21 May 2024]
Title:Last-Level Cache Side-Channel Attacks Are Feasible in the Modern Public Cloud (Extended Version)
View PDF HTML (experimental)Abstract:Last-level cache side-channel attacks have been mostly demonstrated in highly-controlled, quiescent local environments. Hence, it is unclear whether such attacks are feasible in a production cloud environment. In the cloud, side channels are flooded with noise from activities of other tenants and, in Function-as-a-Service (FaaS) workloads, the attacker has a very limited time window to mount the attack. In this paper, we show that such attacks are feasible in practice, although they require new techniques. We present an end-to-end, cross-tenant attack on a vulnerable ECDSA implementation in the public FaaS Google Cloud Run environment. We introduce several new techniques to improve every step of the attack. First, to speed-up the generation of eviction sets, we introduce L2-driven candidate address filtering and a Binary Search-based algorithm for address pruning. Second, to monitor victim memory accesses with high time resolution, we introduce Parallel Probing. Finally, we leverage power spectral density from signal processing to easily identify the victim's target cache set in the frequency domain. Overall, using these mechanisms, we extract a median value of 81% of the secret ECDSA nonce bits from a victim container in 19 seconds on average.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.