Computer Science > Computation and Language
[Submitted on 20 May 2024 (v1), last revised 29 Aug 2024 (this version, v2)]
Title:CReMa: Crisis Response through Computational Identification and Matching of Cross-Lingual Requests and Offers Shared on Social Media
View PDF HTML (experimental)Abstract:During times of crisis, social media platforms play a crucial role in facilitating communication and coordinating resources. In the midst of chaos and uncertainty, communities often rely on these platforms to share urgent pleas for help, extend support, and organize relief efforts. However, the overwhelming volume of conversations during such periods can escalate to unprecedented levels, necessitating the automated identification and matching of requests and offers to streamline relief operations. Additionally, there is a notable absence of studies conducted in multi-lingual settings, despite the fact that any geographical area can have a diverse linguistic population. Therefore, we propose CReMa (Crisis Response Matcher), a systematic approach that integrates textual, temporal, and spatial features to address the challenges of effectively identifying and matching requests and offers on social media platforms during emergencies. Our approach utilizes a crisis-specific pre-trained model and a multi-lingual embedding space. We emulate human decision-making to compute temporal and spatial features and non-linearly weigh the textual features. The results from our experiments are promising, outperforming strong baselines. Additionally, we introduce a novel multi-lingual dataset simulating help-seeking and offering assistance on social media in 16 languages and conduct comprehensive cross-lingual experiments. Furthermore, we analyze a million-scale geotagged global dataset to understand patterns in seeking help and offering assistance on social media. Overall, these contributions advance the field of crisis informatics and provide benchmarks for future research in the area.
Submission history
From: Rabindra Lamsal [view email][v1] Mon, 20 May 2024 09:30:03 UTC (676 KB)
[v2] Thu, 29 Aug 2024 23:45:48 UTC (801 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.