Mathematics > Analysis of PDEs
[Submitted on 17 May 2024 (v1), last revised 23 Jul 2024 (this version, v2)]
Title:Nearly self-similar blowup of generalized axisymmetric Navier-Stokes and Boussinesq equations
View PDF HTML (experimental)Abstract:We perform numerical investigation of nearly self-similar blowup of generalized axisymmetric Navier-Stokes equations and Boussinesq system with a time-dependent fractional dimension. The dynamic change of the space dimension is proportional to the ratio R(t)/Z(t), where (R(t),Z(t)) is the position at which the maximum vorticity achieves its global maximum. This choice of space dimension is to ensure that the advection along the r-direction has the same scaling as that along the z-direction, thus preventing formation of two-scale solution structure. For the generalized axisymmetric Navier-Stokes equations with solution dependent viscosity, we show that the solution develops a self-similar blowup with dimension equal to 3.188 and the self-similar profile satisfies the axisymmetric Navier-Stokes equations with constant viscosity. We also study the nearly self-similar blowup of the axisymmetric Boussinesq system with constant viscosity. The generalized axisymmetric Boussinesq system preserves almost all the known properties of the 3D Navier-Stokes equations except for the conservation of angular momentum. We present convincing numerical evidence that the generalized axisymmetric Boussinesq system develops a stable nearly self-similar blowup solution with maximum vorticity increased by O(10^{30}).
Submission history
From: Thomas Hou [view email][v1] Fri, 17 May 2024 17:07:43 UTC (7,596 KB)
[v2] Tue, 23 Jul 2024 05:27:55 UTC (7,671 KB)
Current browse context:
math.AP
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.