Computer Science > Formal Languages and Automata Theory
[Submitted on 15 May 2024]
Title:A Formal Approach for Tuning Stochastic Oscillators
View PDF HTML (experimental)Abstract:Periodic recurrence is a prominent behavioural of many biological phenomena, including cell cycle and circadian rhythms. Although deterministic models are commonly used to represent the dynamics of periodic phenomena, it is known that they are little appropriate in the case of systems in which stochastic noise induced by small population numbers is actually responsible for periodicity. Within the stochastic modelling settings automata-based model checking approaches have proven an effective means for the analysis of oscillatory dynamics, the main idea being that of coupling a period detector automaton with a continuous-time Markov chain model of an alleged oscillator. In this paper we address a complementary aspect, i.e. that of assessing the dependency of oscillation related measure (period and amplitude) against the parameters of a stochastic oscillator. To this aim we introduce a framework which, by combining an Approximate Bayesian Computation scheme with a hybrid automata capable of quantifying how distant an instance of a stochastic oscillator is from matching a desired (average) period, leads us to identify regions of the parameter space in which oscillation with given period are highly likely. The method is demonstrated through a couple of case studies, including a model of the popular Repressilator circuit.
Submission history
From: Paolo Ballarini [view email] [via CCSD proxy][v1] Wed, 15 May 2024 08:40:44 UTC (4,116 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.