Computer Science > Logic in Computer Science
[Submitted on 16 May 2024]
Title:On the logical structure of some maximality and well-foundedness principles equivalent to choice principles
View PDF HTML (experimental)Abstract:We study the logical structure of Teichm{ü}ller-Tukey lemma, a maximality principle equivalent to the axiom of choice and show that it corresponds to the generalisation to arbitrary cardinals of update induction, a well-foundedness principle from constructive mathematics classically equivalent to the axiom of dependent this http URL there, we state general forms of maximality and well-foundedness principles equivalent to the axiom of choice, including a variant of Zorn's lemma. A comparison with the general class of choice and bar induction principles given by Brede and the first author is initiated.
Submission history
From: Hugo Herbelin [view email] [via CCSD proxy][v1] Thu, 16 May 2024 09:51:41 UTC (142 KB)
Current browse context:
cs.LO
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.