Electrical Engineering and Systems Science > Systems and Control
[Submitted on 12 May 2024]
Title:Graph neural networks for power grid operational risk assessment under evolving grid topology
View PDF HTML (experimental)Abstract:This article investigates the ability of graph neural networks (GNNs) to identify risky conditions in a power grid over the subsequent few hours, without explicit, high-resolution information regarding future generator on/off status (grid topology) or power dispatch decisions. The GNNs are trained using supervised learning, to predict the power grid's aggregated bus-level (either zonal or system-level) or individual branch-level state under different power supply and demand conditions. The variability of the stochastic grid variables (wind/solar generation and load demand), and their statistical correlations, are rigorously considered while generating the inputs for the training data. The outputs in the training data, obtained by solving numerous mixed-integer linear programming (MILP) optimal power flow problems, correspond to system-level, zonal and transmission line-level quantities of interest (QoIs). The QoIs predicted by the GNNs are used to conduct hours-ahead, sampling-based reliability and risk assessment w.r.t. zonal and system-level (load shedding) as well as branch-level (overloading) failure events. The proposed methodology is demonstrated for three synthetic grids with sizes ranging from 118 to 2848 buses. Our results demonstrate that GNNs are capable of providing fast and accurate prediction of QoIs and can be good proxies for computationally expensive MILP algorithms. The excellent accuracy of GNN-based reliability and risk assessment suggests that GNN models can substantially improve situational awareness by quickly providing rigorous reliability and risk estimates.
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.