Astrophysics > Astrophysics of Galaxies
[Submitted on 10 May 2024]
Title:Deceleration of kicked objects due to the Galactic potential
View PDF HTML (experimental)Abstract:Various stellar objects experience a velocity kick at some point in their evolution. These include neutron stars and black holes at their birth or binary systems when one of the two components goes supernova. For most of these objects, the magnitude of the kick and its impact on the object dynamics remains a topic of debate. We investigate how kicks alter the velocity distribution of objects born in the Milky Way disc, both immediately after the kick and at later times, and whether these kicks are encoded in the observed population of Galactic neutron stars. We simulate the Galactic trajectories of point masses on circular orbits in the disc after being perturbed by an isotropic kick, with a Maxwellian distribution of magnitudes with $\sigma=265$ km/s. Then, we simulate the motion of these point masses for $200$ Myr. These trajectories are then evaluated, either for the Milky Way population as a whole or for those passing within two kiloparsecs of the Sun, to get the time evolution of the velocities. During the first $20$ Myr, the bulk velocity of kicked objects becomes temporarily aligned to the cylindrical radius, implying an anisotropy in the velocity orientations. Beyond this age, the velocity distribution shifts toward lower values and settles to a median of $\sim200$ km/s. Around the Sun, the distribution also loses its upper tail, primarily due to unbound objects escaping the Galaxy. We compare this to the velocities of Galactic pulsars and find that pulsars show a similar evolution with characteristic age. The shift of the velocity distribution is due to bound objects spending most of their orbits at larger radii after the kick. They are, therefore, decelerated by the Galactic potential. We find the same deceleration to be predicted for nearby objects and the total population and conclude it is also observed in Galactic pulsars.
Current browse context:
astro-ph.GA
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.