Computer Science > Computer Vision and Pattern Recognition
[Submitted on 18 Mar 2024]
Title:Financial Table Extraction in Image Documents
View PDF HTML (experimental)Abstract:Table extraction has long been a pervasive problem in financial services. This is more challenging in the image domain, where content is locked behind cumbersome pixel format. Luckily, advances in deep learning for image segmentation, OCR, and sequence modeling provides the necessary heavy lifting to achieve impressive results. This paper presents an end-to-end pipeline for identifying, extracting and transcribing tabular content in image documents, while retaining the original spatial relations with high fidelity.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.