Computer Science > Information Theory
[Submitted on 8 May 2024]
Title:Communication-Efficient Collaborative Perception via Information Filling with Codebook
View PDF HTML (experimental)Abstract:Collaborative perception empowers each agent to improve its perceptual ability through the exchange of perceptual messages with other agents. It inherently results in a fundamental trade-off between perception ability and communication cost. To address this bottleneck issue, our core idea is to optimize the collaborative messages from two key aspects: representation and selection. The proposed codebook-based message representation enables the transmission of integer codes, rather than high-dimensional feature maps. The proposed information-filling-driven message selection optimizes local messages to collectively fill each agent's information demand, preventing information overflow among multiple agents. By integrating these two designs, we propose CodeFilling, a novel communication-efficient collaborative perception system, which significantly advances the perception-communication trade-off and is inclusive to both homogeneous and heterogeneous collaboration settings. We evaluate CodeFilling in both a real-world dataset, DAIR-V2X, and a new simulation dataset, OPV2VH+. Results show that CodeFilling outperforms previous SOTA Where2comm on DAIR-V2X/OPV2VH+ with 1,333/1,206 times lower communication volume. Our code is available at this https URL.
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.