Computer Science > Robotics
[Submitted on 8 May 2024 (v1), last revised 16 Sep 2024 (this version, v3)]
Title:GISR: Geometric Initialization and Silhouette-based Refinement for Single-View Robot Pose and Configuration Estimation
View PDF HTML (experimental)Abstract:In autonomous robotics, measurement of the robot's internal state and perception of its environment, including interaction with other agents such as collaborative robots, are essential. Estimating the pose of the robot arm from a single view has the potential to replace classical eye-to-hand calibration approaches and is particularly attractive for online estimation and dynamic environments. In addition to its pose, recovering the robot configuration provides a complete spatial understanding of the observed robot that can be used to anticipate the actions of other agents in advanced robotics use cases. Furthermore, this additional redundancy enables the planning and execution of recovery protocols in case of sensor failures or external disturbances. We introduce GISR - a deep configuration and robot-to-camera pose estimation method that prioritizes execution in real-time. GISR consists of two modules: (i) a geometric initialization module that efficiently computes an approximate robot pose and configuration, and (ii) a deep iterative silhouette-based refinement module that arrives at a final solution in just a few iterations. We evaluate GISR on publicly available data and show that it outperforms existing methods of the same class in terms of both speed and accuracy, and can compete with approaches that rely on ground-truth proprioception and recover only the pose.
Submission history
From: Ivan Bilic [view email][v1] Wed, 8 May 2024 08:39:25 UTC (1,057 KB)
[v2] Tue, 3 Sep 2024 22:56:42 UTC (1,055 KB)
[v3] Mon, 16 Sep 2024 20:28:00 UTC (986 KB)
Current browse context:
cs.RO
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.