Computer Science > Software Engineering
[Submitted on 8 May 2024 (v1), last revised 29 Jul 2024 (this version, v2)]
Title:Concolic Testing of Quantum Programs
View PDFAbstract:This paper presents the first concolic testing framework specifically designed for quantum programs. The framework defines quantum conditional statements that quantify quantum states and presents a symbolization method for quantum variables. Utilizing this framework, we generate path constraints for each concrete execution path of a quantum program. These constraints guide the exploration of new paths, with a quantum constraint solver determining the outcomes to generate novel input samples and enhance branch coverage. We implemented this framework in Python and integrated it with Qiskit for practical evaluation. Experimental results demonstrate that our concolic testing framework significantly improves branch coverage and the quality of quantum input samples, demonstrating its effectiveness and efficiency in quantum software testing.
Submission history
From: Xia Shangzhou [view email][v1] Wed, 8 May 2024 07:32:19 UTC (529 KB)
[v2] Mon, 29 Jul 2024 11:51:40 UTC (524 KB)
Current browse context:
cs.SE
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.