Computer Science > Human-Computer Interaction
[Submitted on 7 May 2024]
Title:Responding to Generative AI Technologies with Research-through-Design: The Ryelands AI Lab as an Exploratory Study
View PDF HTML (experimental)Abstract:Generative AI technologies demand new practical and critical competencies, which call on design to respond to and foster these. We present an exploratory study guided by Research-through-Design, in which we partnered with a primary school to develop a constructionist curriculum centered on students interacting with a generative AI technology. We provide a detailed account of the design of and outputs from the curriculum and learning materials, finding centrally that the reflexive and prolonged `hands-on' approach led to a co-development of students' practical and critical competencies. From the study, we contribute guidance for designing constructionist approaches to generative AI technology education; further arguing to do so with `critical responsivity.' We then discuss how HCI researchers may leverage constructionist strategies in designing interactions with generative AI technologies; and suggest that Research-through-Design can play an important role as a `rapid response methodology' capable of reacting to fast-evolving, disruptive technologies such as generative AI.
Submission history
From: Jesse Josua Benjamin [view email][v1] Tue, 7 May 2024 21:34:10 UTC (24,248 KB)
Current browse context:
cs.HC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.