Computer Science > Cryptography and Security
[Submitted on 5 May 2024]
Title:Swipe2Pair: Secure and Fast In-Band Wireless Device Pairing
View PDF HTML (experimental)Abstract:Wireless device pairing is a critical security mechanism to bootstrap the secure communication between two devices without a pre-shared secret. It has been widely used in many Internet of Things (IoT) applications, such as smart-home and smart-health. Most existing device pairing mechanisms are based on out-of-band channels, e.g., extra sensors or hardware, to validate the proximity of pairing devices. However, out-of-band channels are not universal across all wireless devices, so such a scheme is limited to certain application scenarios or conditions. On the other hand, in-band channel-based device pairing seeks universal applicability by only relying on wireless interfaces. Existing in-band channel-based pairing schemes either require multiple antennas separated by a good distance on one pairing device, which is not feasible in certain scenarios, or require users to repeat multiple sweeps, which is not optimal in terms of usability.
Therefore, an in-band wireless device pairing scheme providing high security while maintaining high usability (simple pairing process and minimal user intervention) is highly desired. In this work, we propose an easy-to-use mutual authentication device pairing scheme, named Swipe2Pair, based on the proximity of pairing devices and randomization of wireless transmission power. We conduct extensive security analysis and collect considerable experimental data under various settings across different environments. Experimental results show that Swipe2Pair achieves high security and usability. It only takes less than one second to complete the pairing process with a simple swipe of one device in front of the other.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.