Computer Science > Artificial Intelligence
[Submitted on 23 Apr 2024 (v1), last revised 12 Jul 2024 (this version, v2)]
Title:CausalLP: Learning causal relations with weighted knowledge graph link prediction
View PDFAbstract:Causal networks are useful in a wide variety of applications, from medical diagnosis to root-cause analysis in manufacturing. In practice, however, causal networks are often incomplete with missing causal relations. This paper presents a novel approach, called CausalLP, that formulates the issue of incomplete causal networks as a knowledge graph completion problem. More specifically, the task of finding new causal relations in an incomplete causal network is mapped to the task of knowledge graph link prediction. The use of knowledge graphs to represent causal relations enables the integration of external domain knowledge; and as an added complexity, the causal relations have weights representing the strength of the causal association between entities in the knowledge graph. Two primary tasks are supported by CausalLP: causal explanation and causal prediction. An evaluation of this approach uses a benchmark dataset of simulated videos for causal reasoning, CLEVRER-Humans, and compares the performance of multiple knowledge graph embedding algorithms. Two distinct dataset splitting approaches are used for evaluation: (1) random-based split, which is the method typically employed to evaluate link prediction algorithms, and (2) Markov-based split, a novel data split technique that utilizes the Markovian property of causal relations. Results show that using weighted causal relations improves causal link prediction over the baseline without weighted relations.
Submission history
From: Utkarshani Jaimini [view email][v1] Tue, 23 Apr 2024 20:50:06 UTC (4,552 KB)
[v2] Fri, 12 Jul 2024 11:11:26 UTC (3,095 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.