Computer Science > Computer Vision and Pattern Recognition
[Submitted on 2 May 2024]
Title:Long Tail Image Generation Through Feature Space Augmentation and Iterated Learning
View PDF HTML (experimental)Abstract:Image and multimodal machine learning tasks are very challenging to solve in the case of poorly distributed data. In particular, data availability and privacy restrictions exacerbate these hurdles in the medical domain. The state of the art in image generation quality is held by Latent Diffusion models, making them prime candidates for tackling this problem. However, a few key issues still need to be solved, such as the difficulty in generating data from under-represented classes and a slow inference process. To mitigate these issues, we propose a new method for image augmentation in long-tailed data based on leveraging the rich latent space of pre-trained Stable Diffusion Models. We create a modified separable latent space to mix head and tail class examples. We build this space via Iterated Learning of underlying sparsified embeddings, which we apply to task-specific saliency maps via a K-NN approach. Code is available at this https URL
Submission history
From: Rafael Tov Elberg Haschelevici [view email][v1] Thu, 2 May 2024 20:03:19 UTC (2,131 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.