Computer Science > Computational Geometry
[Submitted on 30 Apr 2024]
Title:A Framework for Approximation Schemes on Knapsack and Packing Problems of Hyperspheres and Fat Objects
View PDFAbstract:Geometric packing problems have been investigated for centuries in mathematics. In contrast, works on sphere packing in the field of approximation algorithms are scarce. Most results are for squares and rectangles, and their d-dimensional counterparts. To help fill this gap, we present a framework that yields approximation schemes for the geometric knapsack problem as well as other packing problems and some generalizations, and that supports not only hyperspheres but also a wide range of shapes for the items and the bins. Our first result is a PTAS for the hypersphere multiple knapsack problem. In fact, we can deal with a more generalized version of the problem that contains additional constraints on the items. These constraints, under some conditions, can encompass very common and pertinent constraints such as conflict constraints, multiple-choice constraints, and capacity constraints. Our second result is a resource augmentation scheme for the multiple knapsack problem for a wide range of convex fat objects, which are not restricted to polygons and polytopes. Examples are ellipsoids, rhombi, hypercubes, hyperspheres under the Lp-norm, etc. Also, for the generalized version of the multiple knapsack problem, our technique still yields a PTAS under resource augmentation for these objects. Thirdly, we improve the resource augmentation schemes of fat objects to allow rotation on the objects by any angle. This result, in particular, brings something extra to our framework, since most results comprising such general objects are limited to translations. At last, our framework is able to contemplate other problems such as the cutting stock problem, the minimum-size bin packing problem and the multiple strip packing problem.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.