Computer Science > Information Retrieval
[Submitted on 2 May 2024]
Title:Multi-intent-aware Session-based Recommendation
View PDF HTML (experimental)Abstract:Session-based recommendation (SBR) aims to predict the following item a user will interact with during an ongoing session. Most existing SBR models focus on designing sophisticated neural-based encoders to learn a session representation, capturing the relationship among session items. However, they tend to focus on the last item, neglecting diverse user intents that may exist within a session. This limitation leads to significant performance drops, especially for longer sessions. To address this issue, we propose a novel SBR model, called Multi-intent-aware Session-based Recommendation Model (MiaSRec). It adopts frequency embedding vectors indicating the item frequency in session to enhance the information about repeated items. MiaSRec represents various user intents by deriving multiple session representations centered on each item and dynamically selecting the important ones. Extensive experimental results show that MiaSRec outperforms existing state-of-the-art SBR models on six datasets, particularly those with longer average session length, achieving up to 6.27% and 24.56% gains for MRR@20 and Recall@20. Our code is available at this https URL.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.