Computer Science > Databases
[Submitted on 1 May 2024 (v1), last revised 3 Nov 2024 (this version, v2)]
Title:Powering In-Database Dynamic Model Slicing for Structured Data Analytics
View PDF HTML (experimental)Abstract:Relational database management systems (RDBMS) are widely used for the storage of structured data. To derive insights beyond statistical aggregation, we typically have to extract specific subdatasets from the database using conventional database operations, and then apply deep neural networks (DNN) training and inference on these subdatasets in a separate analytics system. The process can be prohibitively expensive, especially when there are various subdatasets extracted for different analytical purposes. This calls for efficient in-database support of advanced analytical methods.
In this paper, we introduce LEADS, a novel SQL-aware dynamic model slicing technique to customize models for specified SQL queries. LEADS improves the predictive modeling of structured data via the mixture of experts (MoE) and maintains efficiency by a SQL-aware gating network. At the core of LEADS is the construction of a general model with multiple expert sub-models trained over the database. The MoE scales up the modeling capacity, enhances effectiveness, and preserves efficiency by activating necessary experts via the SQL-aware gating network during inference. To support in-database analytics, we build an inference extension that integrates LEADS onto PostgreSQL. Our extensive experiments on real-world datasets demonstrate that LEADS consistently outperforms the baseline models, and the in-database inference extension delivers a considerable reduction in inference latency compared to traditional solutions.
Submission history
From: Lingze Zeng [view email][v1] Wed, 1 May 2024 15:18:12 UTC (8,350 KB)
[v2] Sun, 3 Nov 2024 08:58:12 UTC (8,879 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.