Computer Science > Software Engineering
[Submitted on 1 May 2024]
Title:Leveraging Stack Traces for Spectrum-based Fault Localization in the Absence of Failing Tests
View PDF HTML (experimental)Abstract:Bug fixing is a crucial task in software maintenance to hold user trust. Although various automated fault localization techniques exist, they often require specific conditions to be effective. For example, Spectrum-Based Fault Localization (SBFL) techniques need at least one failing test to identify bugs, which may not always be available. Bug reports, particularly those with stack traces, provide detailed information on system execution failures and are invaluable for developers. This study focuses on utilizing stack traces from crash reports as fault-triggering tests for SBFL. Our findings indicate that only 3.33% of bugs have fault-triggering tests, limiting traditional SBFL efficiency. However, 98.3% of bugfix intentions align directly with exceptions in stack traces, and 78.3% of buggy methods are reachable within an average of 0.34 method calls, proving stack traces as a reliable source for locating bugs. We introduce a new approach, SBEST, that integrates stack trace data with test coverage to enhance fault localization. Our approach shows a significant improvement, increasing Mean Average Precision (MAP) by 32.22% and Mean Reciprocal Rank (MRR) by 17.43% over traditional stack trace ranking methods.
Submission history
From: Tse-Hsun (Peter) Chen [view email][v1] Wed, 1 May 2024 15:15:52 UTC (946 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.