Computer Science > Artificial Intelligence
[Submitted on 30 Apr 2024 (v1), last revised 1 Jul 2024 (this version, v2)]
Title:IID Relaxation by Logical Expressivity: A Research Agenda for Fitting Logics to Neurosymbolic Requirements
View PDF HTML (experimental)Abstract:Neurosymbolic background knowledge and the expressivity required of its logic can break Machine Learning assumptions about data Independence and Identical Distribution. In this position paper we propose to analyze IID relaxation in a hierarchy of logics that fit different use case requirements. We discuss the benefits of exploiting known data dependencies and distribution constraints for Neurosymbolic use cases and argue that the expressivity required for this knowledge has implications for the design of underlying ML routines. This opens a new research agenda with general questions about Neurosymbolic background knowledge and the expressivity required of its logic.
Submission history
From: Maarten Stol [view email][v1] Tue, 30 Apr 2024 12:09:53 UTC (1,496 KB)
[v2] Mon, 1 Jul 2024 12:44:38 UTC (1,476 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.