Computer Science > Cryptography and Security
[Submitted on 28 Apr 2024]
Title:Multi-stage Attack Detection and Prediction Using Graph Neural Networks: An IoT Feasibility Study
View PDFAbstract:With the ever-increasing reliance on digital networks for various aspects of modern life, ensuring their security has become a critical challenge. Intrusion Detection Systems play a crucial role in ensuring network security, actively identifying and mitigating malicious behaviours. However, the relentless advancement of cyber-threats has rendered traditional/classical approaches insufficient in addressing the sophistication and complexity of attacks. This paper proposes a novel 3-stage intrusion detection system inspired by a simplified version of the Lockheed Martin cyber kill chain to detect advanced multi-step attacks. The proposed approach consists of three models, each responsible for detecting a group of attacks with common characteristics. The detection outcome of the first two stages is used to conduct a feasibility study on the possibility of predicting attacks in the third stage. Using the ToN IoT dataset, we achieved an average of 94% F1-Score among different stages, outperforming the benchmark approaches based on Random-forest model. Finally, we comment on the feasibility of this approach to be integrated in a real-world system and propose various possible future work.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.