Mathematics > Numerical Analysis
[Submitted on 28 Apr 2024]
Title:An Arbitrarily High-Order Fully Well-balanced Hybrid Finite Element-Finite Volume Method for a One-dimensional Blood Flow Model
View PDF HTML (experimental)Abstract:In this paper, we propose an arbitrarily high-order accurate fully well-balanced numerical method for the one-dimensional blood flow model. The developed method is based on a continuous representation of the solution and a natural combination of the conservative and primitive formulations of the studied PDEs. The degrees of freedom are defined as point values at cell interfaces and moments of the conservative variables inside the cell, drawing inspiration from the discontinuous Galerkin method. The well-balanced property, in the sense of an exact preservation of both the zero and non-zero velocity equilibria, is achieved by a well-balanced approximation of the source term in the conservative formulation and a well-balanced residual computation in the primitive formulation. To lowest (3rd) order this method reduces to the method developed in [Abgrall and Liu, A New Approach for Designing Well-Balanced Schemes for the Shallow Water Equations: A Combination of Conservative and Primitive Formulations, arXiv preprint, arXiv:2304.07809]. Several numerical tests are shown to prove its well-balanced and high-order accuracy properties.
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.