Mathematics > Numerical Analysis
[Submitted on 29 Apr 2024]
Title:Finite Element Approximation of the Fractional Porous Medium Equation
View PDF HTML (experimental)Abstract:We construct a finite element method for the numerical solution of a fractional porous medium equation on a bounded open Lipschitz polytopal domain $\Omega \subset \mathbb{R}^{d}$, where $d = 2$ or $3$. The pressure in the model is defined as the solution of a fractional Poisson equation, involving the fractional Neumann Laplacian in terms of its spectral definition. We perform a rigorous passage to the limit as the spatial and temporal discretization parameters tend to zero and show that a subsequence of the sequence of finite element approximations defined by the proposed numerical method converges to a bounded and nonnegative weak solution of the initial-boundary-value problem under consideration. This result can be therefore viewed as a constructive proof of the existence of a nonnegative, energy-dissipative, weak solution to the initial-boundary-value problem for the fractional porous medium equation under consideration, based on the Neumann Laplacian. The convergence proof relies on results concerning the finite element approximation of the spectral fractional Laplacian and compactness techniques for nonlinear partial differential equations, together with properties of the equation, which are shown to be inherited by the numerical method. We also prove that the total energy associated with the problem under consideration exhibits exponential decay in time.
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.