Quantitative Biology > Neurons and Cognition
[Submitted on 25 Apr 2024]
Title:Reverse engineering the brain input: Network control theory to identify cognitive task-related control nodes
View PDF HTML (experimental)Abstract:The human brain receives complex inputs when performing cognitive tasks, which range from external inputs via the senses to internal inputs from other brain regions. However, the explicit inputs to the brain during a cognitive task remain unclear. Here, we present an input identification framework for reverse engineering the control nodes and the corresponding inputs to the brain. The framework is verified with synthetic data generated by a predefined linear system, indicating it can robustly reconstruct data and recover the inputs. Then we apply the framework to the real motor-task fMRI data from 200 human subjects. Our results show that the model with sparse inputs can reconstruct neural dynamics in motor tasks ($EV=0.779$) and the identified 28 control nodes largely overlap with the motor system. Underpinned by network control theory, our framework offers a general tool for understanding brain inputs.
Current browse context:
q-bio.NC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.