Physics > Optics
[Submitted on 25 Apr 2024]
Title:Application of RESNET50 Convolution Neural Network for the Extraction of Optical Parameters in Scattering Media
View PDFAbstract:Estimation of the optical properties of scattering media such as tissue is important in diagnostics as well as in the development of techniques to image deeper. As light penetrates the sample scattering events occur that alter the propagation direction of the photons in a random manner leading degradation of image quality. The distribution of the scattered light does, however, give a measure of the optical properties such as the reduced scattering coefficient and the absorption coefficient. Unfortunately, inverting scattering patterns to recover the optical properties is not simple, especially in the regime where the light is partially randomized. Machine learning has been proposed by several authors as a means of recovering these properties from either the back scattered or the transmitted light. In the present paper, we train a general purpose convolutional neural network RESNET 50 with simulated data based on Monte Carlo simulations. We show that compared with previous work our approach gives comparable or better reconstruction accuracy with training on a much smaller dataset. Moreover, by training on multiple parameters such as the intensity distribution at multiple planes or the exit angle and spatial distribution one achieves improved performance compared to training on a single input such as the intensity distribution captured at the sample surface. While our approach gives good parameter reconstruction, we identify factors that limit the accuracy of the recovered properties, particularly the absorption coefficient. In the light of these limitations, we suggest how the present approach may be enhanced for even better performance.
Current browse context:
physics.optics
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.