Computer Science > Distributed, Parallel, and Cluster Computing
[Submitted on 24 Apr 2024]
Title:MalleTrain: Deep Neural Network Training on Unfillable Supercomputer Nodes
View PDF HTML (experimental)Abstract:First-come first-serve scheduling can result in substantial (up to 10%) of transiently idle nodes on supercomputers. Recognizing that such unfilled nodes are well-suited for deep neural network (DNN) training, due to the flexible nature of DNN training tasks, Liu et al. proposed that the re-scaling DNN training tasks to fit gaps in schedules be formulated as a mixed-integer linear programming (MILP) problem, and demonstrated via simulation the potential benefits of the approach. Here, we introduce MalleTrain, a system that provides the first practical implementation of this approach and that furthermore generalizes it by allowing it use even for DNN training applications for which model information is unknown before runtime. Key to this latter innovation is the use of a lightweight online job profiling advisor (JPA) to collect critical scalability information for DNN jobs -- information that it then employs to optimize resource allocations dynamically, in real time. We describe the MalleTrain architecture and present the results of a detailed experimental evaluation on a supercomputer GPU cluster and several representative DNN training workloads, including neural architecture search and hyperparameter optimization. Our results not only confirm the practical feasibility of leveraging idle supercomputer nodes for DNN training but improve significantly on prior results, improving training throughput by up to 22.3\% without requiring users to provide job scalability information.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.