Computer Science > Machine Learning
[Submitted on 24 Apr 2024]
Title:Optimizing OOD Detection in Molecular Graphs: A Novel Approach with Diffusion Models
View PDF HTML (experimental)Abstract:The open-world test dataset is often mixed with out-of-distribution (OOD) samples, where the deployed models will struggle to make accurate predictions. Traditional detection methods need to trade off OOD detection and in-distribution (ID) classification performance since they share the same representation learning model. In this work, we propose to detect OOD molecules by adopting an auxiliary diffusion model-based framework, which compares similarities between input molecules and reconstructed graphs. Due to the generative bias towards reconstructing ID training samples, the similarity scores of OOD molecules will be much lower to facilitate detection. Although it is conceptually simple, extending this vanilla framework to practical detection applications is still limited by two significant challenges. First, the popular similarity metrics based on Euclidian distance fail to consider the complex graph structure. Second, the generative model involving iterative denoising steps is time-consuming especially when it runs on the enormous pool of drugs. To address these challenges, our research pioneers an approach of Prototypical Graph Reconstruction for Molecular OOD Detection, dubbed as PGR-MOOD and hinges on three innovations: i) An effective metric to comprehensively quantify the matching degree of input and reconstructed molecules; ii) A creative graph generator to construct prototypical graphs that are in line with ID but away from OOD; iii) An efficient and scalable OOD detector to compare the similarity between test samples and pre-constructed prototypical graphs and omit the generative process on every new molecule. Extensive experiments on ten benchmark datasets and six baselines are conducted to demonstrate our superiority.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.