Computer Science > Robotics
[Submitted on 22 Apr 2024 (v1), last revised 22 Nov 2024 (this version, v2)]
Title:Hierarchical localization with panoramic views and triplet loss functions
View PDF HTML (experimental)Abstract:The main objective of this paper is to tackle visual localization, which is essential for the safe navigation of mobile robots. The solution we propose employs panoramic images and triplet convolutional neural networks. We seek to exploit the properties of such architectures to address both hierarchical and global localization in indoor environments, which are prone to visual aliasing and other phenomena. Considering their importance in these architectures, a complete comparative evaluation of different triplet loss functions is performed. The experimental section proves that triplet networks can be trained with a relatively low number of images captured under a specific lighting condition and even so, the resulting networks are a robust tool to perform visual localization under dynamic conditions. Our approach has been evaluated against some of these effects, such as changes in the lighting conditions, occlusions, noise and motion blurring. Furthermore, to explore the limits of our approach, triplet networks have been tested in different indoor environments simultaneously. In all the cases, these architectures have demonstrated a great capability to generalize to diverse and challenging scenarios. The code used in the experiments is available at this https URL.
Submission history
From: Marcos Alfaro [view email][v1] Mon, 22 Apr 2024 12:07:10 UTC (9,870 KB)
[v2] Fri, 22 Nov 2024 15:51:52 UTC (5,769 KB)
Current browse context:
cs.RO
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.