Computer Science > Human-Computer Interaction
[Submitted on 23 Apr 2024 (v1), last revised 6 May 2024 (this version, v2)]
Title:Illuminating the Unseen: Investigating the Context-induced Harms in Behavioral Sensing
View PDF HTML (experimental)Abstract:Behavioral sensing technologies are rapidly evolving across a range of well-being applications. Despite its potential, concerns about the responsible use of such technology are escalating. In response, recent research within the sensing technology has started to address these issues. While promising, they primarily focus on broad demographic categories and overlook more nuanced, context-specific identities. These approaches lack grounding within domain-specific harms that arise from deploying sensing technology in diverse social, environmental, and technological settings. Additionally, existing frameworks for evaluating harms are designed for a generic ML life cycle, and fail to adapt to the dynamic and longitudinal considerations for behavioral sensing technology. To address these gaps, we introduce a framework specifically designed for evaluating behavioral sensing technologies. This framework emphasizes a comprehensive understanding of context, particularly the situated identities of users and the deployment settings of the sensing technology. It also highlights the necessity for iterative harm mitigation and continuous maintenance to adapt to the evolving nature of technology and its use. We demonstrate the feasibility and generalizability of our framework through post-hoc evaluations on two real-world behavioral sensing studies conducted in different international contexts, involving varied population demographics and machine learning tasks. Our evaluations provide empirical evidence of both situated identity-based harm and more domain-specific harms, and discuss the trade-offs introduced by implementing bias mitigation techniques.
Submission history
From: Koustuv Saha [view email][v1] Tue, 23 Apr 2024 01:50:47 UTC (7,168 KB)
[v2] Mon, 6 May 2024 03:23:28 UTC (7,589 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.