Computer Science > Computation and Language
[Submitted on 9 Apr 2024]
Title:"Hey..! This medicine made me sick": Sentiment Analysis of User-Generated Drug Reviews using Machine Learning Techniques
View PDF HTML (experimental)Abstract:Sentiment analysis has become increasingly important in healthcare, especially in the biomedical and pharmaceutical fields. The data generated by the general public on the effectiveness, side effects, and adverse drug reactions are goldmines for different agencies and medicine producers to understand the concerns and reactions of people. Despite the challenge of obtaining datasets on drug-related problems, sentiment analysis on this topic would be a significant boon to the field. This project proposes a drug review classification system that classifies user reviews on a particular drug into different classes, such as positive, negative, and neutral. This approach uses a dataset that is collected from publicly available sources containing drug reviews, such as this http URL. The collected data is manually labeled and verified manually to ensure that the labels are correct. Three pre-trained language models, such as BERT, SciBERT, and BioBERT, are used to obtain embeddings, which were later used as features to different machine learning classifiers such as decision trees, support vector machines, random forests, and also deep learning algorithms such as recurrent neural networks. The performance of these classifiers is quantified using precision, recall, and f1-score, and the results show that the proposed approaches are useful in analyzing the sentiments of people on different drugs.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.